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ABSTRACT

Neural Implicit Surfaces
for Large Scenes

using Valid Region Sampling

Chaerin Min
Dept. of Computer Science

The Graduate School
Hanyang University

In this thesis, I propose the valid sample region approach on neural im-

plicit surfaces for large scenes. Previous neural 3D reconstruction algorithms

query the deep neural network based on uniformly sampled positions. Recent

methods exploit the inverse CDF of the coarse network to adapt to the scene

using a two-stage strategy. However, these mechanisms come at the cost of

excessive reconstruction time and su↵er from noisy outputs. Meanwhile, im-

proved single-stage sampling strategies remain to be investigated. The pro-

posed method progressively adapts the queries to the scene surfaces during

optimization. In the discrete volume rendering process, this method introduces

the sampling range proposal of possible surface existence. Moreover, with the

observation that most areas of the inside-out scenes are empty spaces, the

proposed formulation enables sample suppression for regions repeatedly diag-

nosed as non-surface. Also, since the algorithm adapts to the distance between

the camera and the object, a memory reduction of 40% is made possible for

the same reconstruction quality. Through experiments on both synthetic and

real-world datasets, the proposed framework significantly outperforms the ge-

ometric results of the latest surface reconstruction approach by using the valid

region sampling algorithms. The proposed method is up to four times faster,

with comparison to the state-of-the-art surface reconstruction baseline. Fur-

thermore, the proposed approach achieves substantially more reliable mesh
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outcomes than the Instant-NGP, both from small-scale synthetic data and

from challenging large scenes captured from the real world.
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Chapter 1. Introduction

In the rapidly advancing field of artificial intelligence, computer vision is

an essential component. Within this field, 3D reconstruction is a fundamental

problem that is widely used in robotics, games, AR/VR, animation, and other

applications. The capability to reconstruct 3D data from images is crucial for

building metaverses and digital twins.

The faithful restoration of scenes of a size similar to that of the actual

surrounding environment, as opposed to small objects, remains a challenge in

the previous arts. Figure 1.1 displays di↵erent approaches of the scene recon-

struction, extracting dense iso-surface through a traditional algorithm [1]. The

state-of-the-art (a) [2] struggles to generate correct surfaces on geometry and

exhibits apparent noise. While neural graphics primitives allow photo-realistic

rendering at an interactive rate, a closer examination of geometry through the

visualization of the level set alerts the limitations of current works in coupling

its visual appeal with correct geometry in full.

Recent successes [3–5] have been reported in achieving more accurate ge-

ometry reconstruction. Several methods [6–8] improve on top of the impressive

base models (a) [2] by the use of implicit surface representation, namely SDF.

This includes the novel paradigm for creating distance fields [9, 10], the con-

straints using multi-view photo consistency [4], and the exploitation of monoc-

ular depth [6] to regularize surfaces. However, most of these methods hinge the

original re-sampling strategy of [11] on their volume rendering stage, which in-
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curs a linearly scaled number of model passes with respect to the size of the

predefined space. To concentrate the samplings to a certain area, [9] proposes

a sampling methodology that calculates the opacity error bound. It adapts the

model to meaningful regions of the scene, resulting in accurate geometric re-

construction for unknown scenes. On the other hand, the exhaustive sampling

method is impractical for large scenes as it requires up to five passes through

the network to find the error bound, causing the model to be painfully slow. [3]

o↵ers functionality to adapt the model complexity by having separate auto-

decoders for each level of the feature grid. However, this approach requires

di↵erent processor for each level, limiting the practical resolution and making

it unsuitable for large scenes.

The proposed method in this dissertation di↵ers from [6, 9–14] in that I

require only a single stage to adapt to the surface. With the motivation that

the development of MVS techniques [15, 16] is capable of implying where the

ray is likely to hit the nearer object, as the COLMAP [17] in DSNeRF [18], I

encode the depth prior into the range proposal along the ray. With the range

proposal boundary, I march the ray within the e↵ective regions and integrate

the influence of each network pass. The algorithm preserves the samples with

high impact while diminishing the boilerplate samplings throughout the train-

ing. When the optimization progresses, I find the neural network ouputs to be

a compelling guidance for caching certain regions in the space. This insight is

made possible because the purpose of the scene reconstruction is to model a

single spatial space. I cast the ray through a discretized and relatively coarse

grid and read the value stored in the cache that the sample falls into, in order
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(a) iNGP [2] (b) The proposed

Figure 1.1: Mesh results using Marching Cubes [1] on the Business dataset. Existing state-
of-the-art neural radiance field [2] produces noisy geometry on large scenes when viewed with
faces of zero-level set. I demonstrate that the proposed approach successfully regularize the
geometry and find more accurate surface through sample proposal, surface caching, and
regularizations

to decide whether to query another radiance and SDF from that voxel.

In this dissertation, I demonstrate that using depth prior on the volume

accumulation can substantially improve reconstruction speed and geometry

quality, at the same time, when modelling large scale environment. Addition-

ally, I show that the spatial cache fields and the feature selection can further

enable computational e�ciency of 20 hours reduction and 40% decrease of

memory used for fitting the network to the Business dataset. The experiment

verifies the hypothesis that using the prior knowledge and the previous out-

put allows e↵ective surface positioning, which is di↵erent from the existing

approaches [5,6,9,10,12,19] that require iterative solution every time a ray is

given.

To enable e↵ective data acquisition in large scenes, I adopt [20] to enhance

the consistency between a batch of cameras installed on a same rig. I provide an
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additional contribution by utilizing [15] for dense quality reconstruction of such

data. Note that the models are evaluated using the data that is processed in the

same manner. The proposed results demonstrate that surface reconstruction

can be successfully achieved even in challenging environments where the light

source is not conditioned and the space is uncontrolled. The main contributions

of this dissertation are summarized as:

• Besides the urban reconstruction [21–24] using aerial photographs, I al-

low the accurate, dense, and detailed level set of geometry from real-world

images of large scenes.

• The proposed ray casting method handles the inside-out views, which is

challenging due to the less inferable surface location in the initial state,

by the bounded sampling and regularization.

• I propose a novel method that exploits the priors regarding scene surfaces

given omni-directional inputs, and this results in 41% higher performance

regarding depth than iNGP and 56% acceleration of the reconstructing

time with similar results on the real dataset, compared to MonoSDF [6].
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Chapter 2. Related Works

2.1 Neural Fields for Implicit Surfaces

Classical methods express 3D shapes with explicit meshes and point clouds.

Another approaches [25–27] focus on the signed distance fields, recently getting

increasing attention for being able to handle complicated shapes e�ciently and

continuously. [28,29] stores SDF values to encode the Euclidean space into the

spatial data structure with mathematical functions. Recent approaches such

as DeepSDF [30] and Occupancy Networks [31] attempt to approximate the

SDF with the di↵erentiable neural networks, mostly with MLPs. [32,33] allows

the deep neural networks to represent the accurate geometry without specific

restrictions on certain topology or resolution. Seminal papers [2, 11, 12, 34]

achieve photo-realistic rendering, and they leverage the ray casting and density

fields. [4, 8–10] aim to boost the accurate geometric reconstruction ability of

the NeRF and replace the density with traditional signed distance field repre-

sentation. Moreover, [6] presents surface guidance by adopting an o↵-the-shelf

monocular depth and monocular normal from the pretrained Omnidata [35]. A

similar approach can be found in [18] which improves the geometry by making

point clouds using Structure-from-Motion. The proposed method extends this

line of works, and I incorporate additional surface constraints so that I can

avoid flickering and unsmooth surfaces.
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2.2 Neural Fields for Large Scenes

Lately, researchers [7,21–23,36,37] consider large scene reconstruction from

inside-out views by taking inspiration from [11]. [22] processes aerial photog-

raphy and separates geometry from color, improving the quality of large scene

reconstruction. [7] and [23] propose the combination of many NeRF modules to

achieve high quality rendering of city-scale scenes. In addition, [7,21,23] release

Waymo Block-NeRF dataset and also utilize Google Earth Studio data for the

purpose of evaluating the large scene reconstruction of di↵erent algorithms.

However, research on a large number of high-resolution images obtained di-

rectly from street-level views has been less extensively studied. [36] focuses

on street renderings using LiDAR data, and it exhibits the visualization of

renderings. [38] extends the possibility of reconstructing real-world scenes by

introducing unbounded coordinate embedding. I di↵er from the previous tech-

niques in that I improve the large-scene neural representation into quality

dense iso-surface given the challenging street views.

2.3 Neural Fields with Adaptive Sampling

The neural scene reconstruction methods are limited in terms of long train-

ing times [39, 40]. It takes 12 hours for typical NeRF variants [6, 38] to overfit

to an object given 479 512⇥512 images [11]. Since the process spends most of

the time on neural auto-decoder, i.e., MLP, the training time generally grows

proportional to the sampling rate. To mitigate this issue, iNGP [2] propose to

store only the local information on its pre-located spatial nodes. Thus, it allows

the model to reduce the MLP size and accelerates the rendering. Hash encoding
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techniques [2, 3, 7], nonetheless, are still limited in memory e�ciency, for the

same size of feature grid encoding is required regardless of the scene complex-

ity and visibility. The closest state-of-the-art solutions to the proposed method

are [9] and [13,14] in the sense that they attempt to achieve more concentrated

and thus more accurate sampling by reducing the search boundary. The iter-

ative nature of [9, 10] and the involvement of additional networks [13, 14, 38]

cause the models to introduce high computational costs. In constrast, the pro-

posed method aims to filter the queries within the ray-surface intersections. To

make the model suitable for reconstructing large scenes, I employ geometric

prior and the model output to do the filtering while modulating the model

complexity based on the scene visibility information.
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Chapter 3.Methodology

In this thesis, I propose to bound the e↵ective search range of both surfaces

and surface grid features given a large-scale scene. In Section 3.1, I provide the

background of neural implicit reconstruction. I then describe in Section 3.2 the

data collection setting of an ego car view and discuss remaining challenges of

neural surface fields. In Section 3.2.1, I introduce range boundary for e�cient

ray casting via depth guidance. The Section 3.2.2 presents sample culling by

additionally using density cache grid. Furthermore, in Section 3.3, I suggest

the selection for the grid encoding features, based on the distance to object

boundaries. Lastly, Section 3.4 provides regularization to the implicit neural

surfaces, followed by the proposed optimization functions described in Section

3.5.

3.1 Neural Implicit Surfaces

I represent the 3D scene as a SDF [41]. SDFs are signed distance functions

f : R3 �! R to the closest surface S = @M from a point x 2 R3, where volume

M ⇢ R3. The surface is represented by a level set of the f(x) as follows:

S = {x 2 R3 | f(x) = 0}. (1)

A neural SDF f⇥ approximates the SDF as a di↵erentiable deep neural

network [30]. In this dissertation, I formulate a scene with a SDF since SDF

takes advantages as a compact form of formulating a 3D shape, of which the

computational cost remains the same regardless of the scene size, given the
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same size of the neural network.

I model the scene by encoding a position x into a feature vector. Then,

I process this feature vector with a light-weighted Multi-Layer Perceptron

(MLP) [42] to output the prediction of the SDF s and the radiance field c.

I leverage the hash encoding [2] to exploit the geometric primitives and embed

them in the space as

h(x) =

 
3M

i=1

xi⇡i

!
mod T (2)

, where ⇡i is a large prime number and
L

represents bit-wise XOR operation.

This hash encoding h : R3 �! RF maps a position x to a feature of dimension

F when the hash table size of a feature grid is restricted to T 2 N.

3.1.1 Volume Rendering of SDFs

In order to aggregate the occupancy along a ray so that I can determine

rendered color C at a pixel, I transform the output sdf s = f⇥(x) into corre-

sponding density. For this purpose, I define the S-density function [10] using

the logistic density distribution �↵(x) = ↵e
�↵x

/ (1 + e
�↵x)2 . Note that ↵ is

a learnable parameter that allows the neural network to adapt the standard

deviation of �↵(x) to each scene by adjusting 1/↵ [10]. Given ray from the

camera origin o and the direction v, I denote the set of points along the ray as

{p(t) = o+tv|t 2 R+}, where kvk = 1. The density function of the coordinate

x, denoted �, indicates the probability a infinitely small and thus volume-less

point on a ray starting from o, for each t � 0, falls inside an object,
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�(t) = max

 
�d�↵

dt
(f(p(t)))

�↵(f(p(t))
, 0

!
, (3)

, where �(t) shall be proved [10] to attain a local maximum at a surface inter-

secting point at p(t⇤), i.e. f(p(t⇤)) = 0 and to obtain larger contribution to

the rendered value for the nearer points when f(t) are competing on a ray.

Then, the transmittance function in the segment [o,p(t)] is given by

T (t) = exp

✓
�
Z

t

0

�(p(u))du
◆
. (4)

Finally, I theoretically integrate the color and density along the ray to

obtain the rendered RGB value C(o,v) as follows:

C(o,v) =
Z

+1

0

T (t)�(t)c(p(t),v)dt. (5)

3.2 Valid Region Sampling

Neural implicit fields mainly assume object-centric environment, densely

reconstructing the geometry. However, this data acquisition system hardly ap-

ply to images captured by autonomous vehicles. In order to be consistent with

the driving system, I propose a camera placement in a panoramic configura-

tion, inspired by [43]. The ego vehicle obtains data surrounding itself in an

inside-out manner, including feature-less walls and moving persons in many

parts of the scene. This involves the real-world noises from camera e↵ects such

as vignetting, white balance, and auto-focusing, which I handle in Section 3.4.

With the proposed close approximation to the robot driving scenario, the j-th

ray of viewing direction Ri⇧
�1

i
(uj), for the image pixel coordinate uj, given

the projection function ⇧i of the i-th camera for the given camera model,
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are beamed outward from di↵erent views Pi = [Ri, Ti], i = 1, ..., n without all

of them having to point toward a certain concentrated target area. As a re-

sult, with the existing NeRF methods, optimizing a ego novel view synthesis

becomes more challenging.

3.2.1 Sample Proposal

In this section, I aim to reduce the search space of the ray samples T given

the inside-out multi-camera capture system. This is essential since the search

range of S increases cubically to the scene resolution n, i.e. O(n3). The high

cost with regards to the scene size become a substantial problem when it comes

to driving scenarios because the discretized version of volume rendering scales

the procedure time linearly to the sampling rate, as shown in Eq. 6. The

numerical quadrature in Eq. 6 approximates the integral counterpart in Eq. 5

at the samples T = {ti}mi=1
, 0 = t1 < t2 < ... < tm, with the sample interval

length M t,

C(o,v) ⇡ ĈT (o,v) =
m�1X

i=1

T (ti)↵(ti)ci(p(ti),v) (6)

, where ↵(ti) = 1 � e
��(ti)Mt. T (t)�(t) is the approximated Probability

Density Function [9] (PDF) of the contribution to the rendered output. Its

quality depends on the approximation on the discrete samples T and their

intervals. One solution to adaptively sample near the t where value the PDF

is high is to invert the CDF, i.e.
�R

�(t)T (t)dt
��1

. Practically, I easily derive

O(t) =
R
�(t)T (t)dt = 1 � T (t). However, sampling with O

�1 relies on the

quality of the model density. Also, this sampling strategy consumes sample

11



queries on non-surface areas at least at the course sampling stage. [10] reported

that they found four re-sampling stages in total were necessary to reach their

geometric precision requirement. Another solution is to sample points using

approximation error bound of opacity O [9]. However, this method requires

additional queries to estimate the error bound itself, and I tested the impact

of the number of queries on training time in Section 4.

I leverage the information that the camera installed on a robot rig can

provide with. This is unique in that I assume the cameras are equipped on

a driving robot, and thus have to be at a fixed configuration. The estimated

depth [15] using the matching cost volume is used to bound the range of the

approximation samples of ray casting. Given the equirectangular depth map,

I map it into a fisheye image plane to let the depth field be suitable for the

large FOV input I of this thesis, using inverse spherical sweeping [44].

Given the MVS depth field D
⇤, for each ray that is consistent with the

image ray p, the sample set T is computed based on the prior that the nearest

obejct boundary to o is likely to be located near d⇤ for each pixel j:

Tdg =
�
t|t ⇠ N (d⇤

j
, kd

⇤
j
)
 
, (7)

where k is a parameter to tune the variable variation of the Gaussian sample

distributionN . In order to consider that the large depth induces small disparity

on the image plane I, I impose larger variance on t with larger depth. In scheme

of Eq. 7, I assume the same number of samples on each ray.

However, Eq. 7 may overlook the empty space, which causes vulnerability

in the early course of training. To alleviate this issue, I support the Tdg with

12



Tu,

Tu = {ti}
mj

i=1
, ti = (i� 1)

Mj

n� 1
, i 2 [n]. (8)

I subscript the pixel index j on M to highlight that I stop generating Tu at the

Normalized Device Coordinates boundary , namely ”NDC” [45]: B = [�1, 1]3,

x 2 B. By defining B, I ensure the query points are within the grid coordinate

allocated for the modelled scene, and I use the AABB-Intersection algorithm

[46] between the ray and NDC to precisely figure out where to stop Tu. Finally,

the sample set T defines

Tk(oi,vj, d
⇤
j
) = sort(U [Tdg, Tu]). (9)

The proposed T works with a single drawing of {ti} on each p. Eq. 5

can also be extended to the PDF of depth regarding {ti}, where the proposed

heuristic-driven sampling strategy produces a byproduct that works as a su-

pervision.

DT (p) =
X

i=1

⌧(ti)ti Ldepth =
X

p2P

kD̂T (p)� D̂
⇤(p)k2 (10)

, where the derivative of O is ⌧(ti) , ↵(ti)T (ti). Inverse depth D̂(·) = 1/D(·)

is used, which aligns with the disparity space.

3.2.2 Sample Culling

I describe the ray marching with sample culling procedure in Algorithm 1.

The bitfield V is reused at the test phase to accelerate the rendering. When

inference stage, additional stopping criteria is proposed. That is, the ray march-

13



ing runs until the sum of the densities reaches 1.

3.3 Valid Feature Selection

Data captured from robot driving mostly covers a large scene, so the op-

timization takes extra time to converge. In this sense, I adopt the multi-

resolution grid of geometric primitives [2,3] which allows independent encoding

across di↵erent part of the 3D scenes. However, I found that the driving agent,

by nature, moves through a route without visiting every part of the captured

space equally. For instance, even if a robot took an image of a house along-

side the street, it may only run through the line of the road. Still, the multi-

resolution grid treats the near-distant trees and the house in the long distance

with equal level of details. The motivation is to attenuate the grid feature by

Nyquist [47] theorem. Objects away from the camera center are projected to

fewer pixels in the image plane, where the computation of the objective func-

tion occurs. Therefore, the distant objects should be supersampled to meet the

Nyquist frequency. This strategy, however, is not best suited for large scenes,

and comes at the cost of already slow rendering process to describe delicate de-

tails of a window on a 10km-away building. I are inspired by the set of di↵erent

discrete scales of the feature grid Z. The feature vector of Lmax · F dimension

represents all levels of downsampling scales. I select the level for each t, based

on the footprint of the cone frustum intersecting the scene by the ray. This

approach is known as prefiltering in digital signal processing and allows reduc-

ing the memory footprint of the hash table, corresponding to the feature grid.

With the discrete level l = 1, ..., Lmax 2 N, the feature vector of each scale l is
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computed and interpolated to be  (x; l,Z),  : R3 �! RF . Then, the input fea-

ture vector to the MLP is aggregated: z(x;Z) =
L

L
max

l=1
 (x; l,Z⇥), where

L

concatenates the features. To approximate the footprint of the cone frustum,

the radius of the cone on the normalized image plane ṙ = xj+1�xj of i-th view

is multiplied by the sample tk. Pixel u
j

i
is back-projected into xj = g(M�1

i
uj

i
),

where g(·) and M is the fisheye undistortion combined with normalization and

the camera parameter matrix, respectively. The appropriate scale is character-

ized by ti and the resolutions Nmin and Nmax of the multi-resolution grid Z is

derived as follows:

L̃ = argmin
l2N

k 2

bNmin · bl�1c � tiṙk, (11)

b , exp(
lnNmax � lnNmin

Lmax � 1
) (12)

Then, I modulate  1:Lmax with the bell-shaped function:

!L = k · e�
(L̃�L)2

2c2 (13)

,where I take inspiration from Guided Stereo Matching [48]. The memory re-

duction is shifted from the post-training time to a precomputation phase; the

maximum appropriate scale need only be computed once the train trajectory

of the robot is given - the closest distance from the views and the position is

all things to be considered. The SDF network f⇥ takes as input the modulated

15



feature vector  ̃ =  ̃1:Lmax ,  ̃L =  L � !L :

f, ẑ = f⇥(�
PE(x), z̃(x;Z⇥),x) (14)

,where z̃(x;Z⇥) =
L

L
max

l=1
 ̃(x; l,Z⇥) Additionally, I are inspired by Rahaman

et al. [49], and use Positional Encoding from the Transformer [50] architecture,

�
PE(x) = [sin(x), cos(x), ..., sin(2J�1x), cos(2J�1x)]|, to address higher fre-

quency. The concatenation of the SDF features ẑ , Spheircal Harmonics [44]

encoding �
SH for better integratation of view-dependent reflected radiance,

normal n, and position x is fed into the neural network c⇥ to synthesis the

radiance field:

c = c✓(x, �SH(v), ẑ,n(f⇥(x))) (15)

, where I define n(x) in the subsequent section. The e�ciency of the grid

memory can be computed ahead of time, which I show the detailed explanation

in Section 4.

3.4 Surface Regularization

Classical NeRF constraints [11, 12, 34] produce photo-realistic rendering,

and the latest Neural SDFs [6, 9, 10] successfully make the ⌧(ti) concentrated

near S on a ray. However, when it comes to the structure between adjacent rays,

conventional methods tend to have reported flickers and unsmooth surfaces. To

address this issue, I explicitly regularize the model by deriving surface normal

vectors, n, during the training, from the predicted distance field f⇥. By using

the fact that the steepest direction vector of a SDF at a x is perpendicular to

16



the zero-level boundary of the SDF, I derive n(x) from

n(x) = rxf⇥(x). (16)

Then, I provide two di↵erent geometric constraints using Eq. 16. First, I ap-

proximate the normal vector on the 2D image plane by accumulating the com-

puted n(x) multiplied by the interval length and the probability density func-

tion [6]. In particular, I adopt the rectangle rule as follows,

N(p) =
Z 1

0

n(x(t))⌧(t)dt ⇡ NT (o,v) =
X

i=1

⌧(ti)n(x(t)). (17)

The residual between the N and the pseudo GT normal can be used,

Lnormal =
X

p2R

kN̂⇤(p)� N̂(p)k1 + k1� N̂
⇤(p)|N̂(p)k1. (18)

, where I normalize N(·), i.e. kN̂k = 1. I calculate the pseudo GT normal from

the given OmniMVS [15] depth field D
⇤. For pixel coordinates u 2 N2,

n̂⇤(xj) =
(xj � xk)⇥ (xj � xl)

k(xj � xk)⇥ (xj � xl)k
, (19)

where kuj �ukk = 1, kuj �ulk = 1 and xj = (g((uj �ci)/fi) ⇤ dj)vi. fi is the

focal length, ci is the optical center, and g(·) indicates the mapping function

between rj = kuj � cjk2 and ✓ of a fisheye camera.

Second, note that, in Eq. 16, n is not guaranteed to be a unit vector.

To regularize f⇥ to be geometrically SDF-like, I detour by forcing the normal

vector, derived from f⇥, to be of size 1. For this purpose, I adopt the Eikonal

17



function [51] as follows,

Leik =
X

x⇠T [X

(krxf⇥(x)k2 � 1)2 (20)

where I denote the set of uniform samples within the proposed B as X . I

additionally introduce the total variance term of n:

Lnreg =
X

x⇠T [X

kn(x)� n(x̃)k, x̃ ⇠ Nx (21)

, and k · k2 denotes L-2 norm. The neighboring point x̃ is sampled from the

neighbor of x, N = {xj|kxj � xik < ⇢,xi,xj 2 R3}, of radius ⇢. In addition,

for the static assumption, I semantically segment moving objects by using the

stable SOTA, Deeplab V3 [52], and remove the segmented pixels from the

residual function defined in Eq. 23.

3.5 Optimization

The proposed objective function follows the original photometric loss pro-

posed by NeRF [11]:

Lphoto =
X

p2P

kI⇤p � IT (op,vp)k1 (22)

, where I 2 R3. On top of the color constraint, I combine the Eq. 10, 18, 20,

and 21. Finally, the proposed overall objective function is as follows:

L = Lphoto + �1Ldepth + �2Lnormal + �3Leik + �4Lnreg. (23)
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Algorithm 1 Ray marching with sample culling at training
Input:
P : set of rays
B: NDC
i: frame index, j: pixel index
Require:
tn: nearest t to sample
✏: exponential step factor
V : sample culling of a single resolution, V : bitfield
⌦j: set of densities on pj

⇥0: warm-up trained SDF network parameter
�e: surface criteria, : bitfield tolerance, �: update step
Output:
updated bitfield V
trained network parameter ⇥

while until convergence do
Sample a random ray (oi,vj) ⇠ P
x0  oi + tnvj

while xk 2 B do
if V⇤ = 1 and xk Hits V⇤ then

�k  f⇥(xk;Z)
if �k < �e then
if V

⇤
>  then

V⇤  0
else

V
⇤  V

⇤ + 1

else
V

⇤  0
⌦j  �k

xk  xk + (1 + ✏)tvj

else
V

⇤
,xk+1  NextVoxel(pj)

xk  xk+1

Ĉ⌦j , D̂⌦j  VolumeRender(⌦j,⇥)

⇥ ⇥� �r⇥Ltotal(Ĉ, D̂)

Return: V ,⇥
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Chapter 4. Experiments

4.1 Datasets

I trained the proposed model on Garage dataset, Aria dataset, and Business

dataset. Garage is a synthetic dataset with BRDF. Using Blender, I created

four 220 FOV cameras on a rig and 20 views for each camera. For Aria dataset,

I operated 4 cameras on a helmet and captured data from an o�ce named Aria.

OmniSLAM [53] was used to estimate the poses, and OmniMVS predicted the

depth. Aria dataset contains 1200 frames, but I selected 130 frames which cov-

ers a seminar room. Lastly, I operated the same system as Aria, inside Business

building at Hanyang University, for which I named this dataset Business. The

trajectory of Aria and Business includes loops for higher camera pose precision.

Both of the real datasets contain challenging factors such as walking people,

texture-less walls, and floors.

4.2 Implementation Details

I use PyTorch [54] and CUDA for implementing the proposed method. The

proposed model fits to input images of size 1344 ⇥ 1080. Hyper-parameters

pertaining to the multi-resolution hash grid follows [2,6]. The NDC is created

based on the maximum o↵set with regards to the average of the camera poses

throughout all spatial dimensions. For synthetic datasets, I choose 0.1, 0.1, 0.1,

0.05 and for �1,�2,�3,�4, respectively, while they are 0.05, 0.05, 0.1, 0.05 and

for real-world datasets. For real datasets, I also apply decay on the � weights

as the training progresses.
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4.3 Evaluations

4.3.1 Quantitative Comparisons

I compare the quantitative results against the State-of-the-art neural re-

construction models [2,6,12]. Among the variants that [6] proposed, I evaluate

on the multi-resolution grid version of it since that is reported to show the

best scores with regards to geometry quality. In Table 4.1, I adopt PSNR

for rendering evalution, RMSE and MAE for depth maps, and angle error in

degree for normal vectors in 2D. PSNR, Depth RMSE, and Normal angle error

are computed on 50 8Ki batches and are averaged. Depth MAE is measured

in the unit of images. I assume the normal vectors are directional vectors, i.e.

unit vectors, and normalize them into size of 1. The normal vectors with sizes

far from one largely appear in [2, 12] which lack surface regularizations. In

this sense, I note the e↵ectiveness of surface constraints. In Table 4.1, the

proposedmethod significantly outperforms on real datasets while the result of

this thesis degrades on a synthetic dataset. The proposed model particularly

performs better at normal estimation since it introduces the sample proposal

strategy and surface regularization.

In Table 4.2, I measure the time of reconstructing the Garage scene and

demonstrate the time for an epoch. The proposed models accelerate by more

than two times faster than MonoSDF [6] and three times than Mip-NeRF.

iNGP records the fastest reconstruction time, but it fails to precisely recon-

struct the geometry as shown in the qualitative result.
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4.3.2 Qualitative Comparisons

I illustrate rendered images, depth maps, and meshes of Garage dataset in

Figure 4.1. The images and depth maps are shown at 360 degree in horizontal

and 180 degree in vertical to e�ciently demonstrate the large scene recon-

struction. Meshes are rendered with vertex color. The result from iNGP [2]

produces messy surfaces with triangles flickering, since it fails to constrain

samples around surfaces and does not provide regularized density fields due

to the sole dependency on hash encoding. Mip-NeRF [12] successfully pre-

vents aliasing using the Mip-map from graphics, and it adopts hierarchical

sampling strategy from [11] without grid hash encoding. However, [12] still

shows limited performance in surface representations and vertex colors due to

the weight distribution in high frequency from naive samplings. Although [6]

spends twelve times to improve upon [2], the object boundaries becomes com-

parably sharper. When using the proposed method, the vertex color has extra

improvement while reducing the additional modelling time. Note that I encode

the position with the hash encoding as [2], but the result of this paper is with

more fidelity in terms of clean surfaces.

I conduct the experiments on real-world datasets in Figure 4.2 and 4.3.

Ours successfully handles challenging parts, i.e. texture-less window in the left

and walls, and improves upon [6] at areas with less ray intersection. The pro-

posed model works significantly better for rendering and depth, particularly

in real scenes. The floaters are reduced and the depth noise along with the

color floaters is removed. The first row of the Figure 4.2 demonstrates depth

and normal maps used for geometric supervision as [6]. The proposed proposed
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method presents even higher quality geometry than the output of the guid-

ing network. In Figure 4.3, I evaluate the baseline model and the proposed

model on challenging condition of highly reflective and large scene. Though [2]

minimizes the loss function more rapidly in the initial phase, it shows limited

performance at the end, even if it is trained for as much time as the proposed

method is trained. In Figure 1.1, the mesh generated by Marching Cubes [1]

from the neural network is able to successfully represent the flat walls and the

details on the honours board, located in the left side.

4.3.3 Ablation Study

I present Table 4.3 to highlight the e↵ectiveness of individual components

of the proposed model. I demonstrate the result on the Garage dataset. One of

the core modules is the sample proposal, abbreviated as sample prop. Between

the second and third row, the sample proposal favorably contributes to both

the color and the geometry. The second row which is without sample proposal

takes more than two hours for an epoch. On the other hand, the experiment

using Sample Prop. reduces the training time into half. The model with the

sample culling performs comparably to that without the sample culling, yet

the sample culling accelerates the training by a factor of 4. This is shown

between the second row and the fourth row. As demonstrated in row 1 and 4,

the surface regularization is slower than the baseline. However, the Table 4.3

presents considerable improvement in geometric reconstruction quality of 19

degree, for the surface regularization method.

In addition, in the Figure 4.4, I show the qualitative comparison between
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the base and the feature selection. The purpose of the feature selection is to

reduce the memory footprint of the grid hash encoding. As the grid largely

replaces the burden of the global MLP processor whose consumption is as

little as 1.1 MB for this case, the memory issue occurs. For the [2, 6], 1.3GB

is consumed only for the grid hash buckets, and the same applies to the base

model as I adopt the grid hyperparameters of [2]. By using the proposed feature

selection, it is possible to reduce the hash memory consumption into 740MB.

Note that I take the di↵erent sizes of the actual hash bucket of each 16 level

into calculation, to be more precise. The quantitative result is 28.68dB, 10.1cm,

and 6.97� for PSNR, Depth RMSE, and Normal angle error, respectively. As

shown in Table 4.1, the numbers are on par with those of Ours. Also, by

using the feature selection, I aim to meet the Nyquist [47] frequency at the

less visible areas. Figure 4.4 e↵ectively demonstrates this e�cacy. The wall

in a long distance, the upper right side, shows red bias at the base model,

but the color of the same wall when I use the feature selection displays the

correct color. This is because the selection of the grid features according to

the visibility serves as the low-pass filter when the signal is projected on a

relatively small number of pixels and thus causes aliasing.

24



G
ar
ag
e

P
S
N
R

[d
B
]

D
ep
th

R
M
S
E
[m

]
D
ep
th

M
A
E
[m

]
N
or
m
al

E
rr
or

[d
eg
]

iN
G
P
[2
]

27
.8
4

0.
17
6

0.
08
64

27
.5

M
ip
-N

eR
F
[1
2]

28
.4
3

0.
12
3

0.
04
92

32
.2

M
on

oS
D
F
[6
]

26
.9
0

0.
14
8

0.
09
36
3

6
.7
3

T
h
e
p
ro
p
os
ed

2
8
.8
5

0
.1
0
9

0
.0
4
8
9

7.
14

A
ri
a

P
S
N
R

[d
B
]

D
ep
th

R
M
S
E
[m

]
D
ep
th

M
A
E
[m

]
N
or
m
al

E
rr
or

[d
eg
]

iN
G
P
[2
]

27
.8
5

0.
30
4

0.
22
6

31
.9

M
ip
-N

eR
F
[1
2]

3
0
.6
1

0.
25
2

0.
19
3

51
.8

M
on

oS
D
F
[6
]

28
.3
4

0.
19
6

0.
09
76

18
.4

T
h
e
p
ro
p
os
ed

29
.2
2

0
.1
5
0

0
.0
8
3
6

1
6
.0

B
u
si
n
es
s

P
S
N
R

[d
B
]

D
ep
th

R
M
S
E
[m

]
D
ep
th

M
A
E
[m

]
N
or
m
al

E
rr
or

[d
eg
]

iN
G
P
[2
]

21
.5
6

0.
84
7

0.
54
9

46
.3

M
on

oS
D
F
[6
]

23
.7
4

0.
69
7

0
.3
0
9

13
.4

T
h
e
p
ro
p
os
ed

2
3
.9
5

0
.6
2
6

0.
31
8

1
2
.0

T
a
b
le

4
.1
:
Q
u
al
it
at
iv
e
E
va
lu
at
io
n
on

G
ar
ag
e,

T
et
ra
,
an

d
B
u
si
n
es
s
d
at
as
et
s

25



Reconstruction Time [min]

iNGP [2] 5
Mip-NeRF [12] 98
MonoSDF [6] 61
The proposed 27

Table 4.2: Epoch train time on the Garage dataset.

(a) iNGP [2]

(b) Mip-NeRF [12]

(c) MonoSDF [6]

(d) The proposed

Figure 4.1: Qualitative comparisons on Garage dataset. Renderings, depth maps, and
meshes are shown.
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Figure 4.3: Qualitative comparisons on Business dataset from the same reconstruction
time. From top to bottom, the results of the input data, iNGP [2], MonoSDF [6], and the
proposed method are shown.

Figure 4.4: Qualitative comparisons on the Garage dataset. Above I show the base, below
the feature selection is applied. While feature selection saves 40% of the grid encoding
memory, the quality of the result remains the same.
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Chapter 5. Conclusion

In this thesis, I present the neural radiance field for large-scale scene recon-

struction. To this end, I employ the novel sample proposal and sample culling

to constrain the queries to be around the surface. The state-of-the-art methods

of neural implicit surfaces rely their approximated weight integration on the

re-sampling strategy. However, the hierarchical approach necessarily includes

queries from the nearest through the farthest, regardless of the optimization

status. This induces weight accumulation involving unnecessary samplings,

which leads to noise sensitivity and exacerbates the already slow training time

for modelling a single scene. To alleviate this problem, I propose to exploit

extra information from the widely-used depth supervision strategy. The pro-

posed sample proposal approach uses geometric prior to bound the e↵ective

sampling boundary. Additionally, by confirming the regions that are not likely

to include surfaces as the reconstruction progresses, the proposed model al-

lows the volume caching which is consistent through multiple views. Still, the

neural fields produce noisy SDF fields when naively applied, so I integrate the

total variance term on the normal prediction derived from the network SDF.

Note that I incorporate the spherical sweeping configuration to collectively

process the data from omni-directions for large-scale scenes and evaluate the

method with this same dataset on other approaches. Experiments show that

the sample proposal and the sample culling accelerate the training from the

state-of-the art methods. Still, the proposed method performs better at recon-

struction quality. For instance, in the Aria dataset which is captured from a real
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o�ce, the depth estimation root mean square error drops 53% from the fastest

baseline and 26% from the model with the closest approach as the proposed

method. Since the proposed approach leverages extra prior from o↵-the-shelf

depth and the model output, the reduced search space of samplings empiri-

cally proves to prevent messy surfaces in areas with high uncertainty. The 3D

geometry represented both in image planes and meshes demonstrates that the

proposed method provides additional improvement upon the baselines. To be

specific, the proposed approach compares favorably to relevant state-of-the-art

baselines at frequently occluded regions in the Aria seminar room and limited

color representation in Garage mesh.
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